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Abstract. A quantum theory of high-field miniband transport in semiconductor superlattices is
developed that is applicable in the electric field range where negative differential conductance
appears. The lateral electron distribution function is determined from a quantum kinetic equation,
in which intracollisional field effects are included. Scattering on polar optical phonons is taken
into account. Unlike the Boltzmann equation approach, our theory reproduces the experimentally
detected temperature dependence of the current in both the hopping and band transport regimes.
Numerical and analytical results show that at low temperatures the lateral electron distribution
function strongly deviates from its equilibrium expression and exhibits sharp edges. For
a superlattice with a narrow miniband the existence of electro-phonon resonance effects is
predicted. The associated resonant-type current anomalies depend strongly on temperature and
are most pronounced at low temperatures.

1. Introduction

In the past few years there has been tremendous interest in the transport properties of
semiconductor superlattices (SLs). Their unique behaviour is caused by the very anisotropic
band structure due to the formation of minibands parallel to the growth direction, and the
existence of both localized and extended carrier states. The narrow wavevector minizone and
the narrow energy band allow electrons in a SL to perform many Bloch oscillations before
being scattered into other parts of the Brillouin zone. As a consequence of this Bragg
scattering on the minizone boundaries, negative differential conductance (NDC) appears
once the Bloch frequency� = eEd/h̄ (E is the electric field andd the SL period) is
higher than some effective scattering rate 1/τeff . NDC in superlattices is a manifestation
of the phenomenon that electrons accelerated perpendicular to the layers might probe the
negative-effective-mass region of the miniband. A long time ago this effect was predicted
by Esaki and Tsu [1]. Some years before this pioneering work, Bychkov and Dykhne
[2] had already pointed out that electrons in narrow-band semiconductors heated by a
strong electric field can be described by an energy-independent lateral electronic distribution
function. This leads to N-shaped current–voltage characteristics, where initially at low
electric fields (eEd � h̄/τeff ) the current increases with increasing electric field and
decreases proportionally to 1/E in the high-field region (eEd � h̄/τeff ).

At nearly the same time, Bryksin and Firsov [3] demonstrated that NDC with a
characteristic 1/E dependence of the current is due to Houston oscillations of electrons
confined to a region of the order of1/eE (1 is the bandwidth) and their inelastic scattering
on optical phonons. In the field region whereeEd � h̄/τeff , the separation between
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the quantized Wannier–Stark levels is much larger than their broadening, and the electron
transport results from phonon-induced hopping between localized oscillator-like states with
a characteristic hopping distance. In the electric field region whereeEd & h̄ω0 (whereω0

is the frequency of optical phonons) the appearance of so-called electro-phonon resonances
was predicted [3, 4] giving rise to a nonmonotonic current–voltage dependence. Peculiarities
observed in the conductance–voltage characteristics of cubic ZnS films have been identified
with such resonant-type anomalies around the Wannier–Stark levels [5, 6]. Strong electro-
phonon resonance effects were also expected to appear in zeolites [7–10], which have narrow
minibands along all directions of the Brillouin zone.

At that time, the main theoretical and experimental interest focused on narrow-band
semiconductors, where the energy dispersion relation is not so strongly anisotropic as in
SLs. The current in such structures is nearly independent of temperature. These temperature
characteristics are due to the heating of the lateral electron motion [3] described by a
transverse electron distribution functionn(k⊥) that does not depend on the wavevector
componentsk⊥ perpendicular to the field direction (n(k⊥) ≈ constant). This result should
be contrasted with the situation in SLs, which behave quite differently. The miniband
transport in a SL strongly depends on temperature [11–13]. This strong temperature
dependence mainly results from the electron distribution function, which describes the
field-dependent coupling between longitudinal and transverse degrees of freedom. This
indicates that the heating of the lateral electron motion in a SL plays a completely different
role to the one it plays in narrow-band semiconductors. For a SL structure it is essential
to treat the lateral electron heating carefully in order to reproduce the measured strong
temperature dependence of the current. To our knowledge this has not been done till now.
Most previous theoretical work relied on the so-called ‘mean-energy-gain’ method [14–16],
wheren(k⊥) is replaced by its equilibrium expression. Other approaches approximately
eliminated the lateral distribution function [17]. None of these papers account properly
for the lateral electron heating and the related temperature dependence of the current. This
observation has motivated our study of high-field miniband transport in a SL by determining
the nonequilibrium electron distribution function and the related field and temperature
dependence of the current.

Other theoretical papers generalized the early work by Esaki and Tsu [1] by treating
Boltzmann’s equation in the relaxation time approximation at finite temperatures [18, 19].
This semiclassical description of the miniband transport is in good qualitative agreement with
experimental results on GaAs/AlAs SLs with narrow miniband widths [11–13]. However,
in these one-dimensional transport models the coupling between vertical and lateral degrees
of freedom has not been taken into account. Consequently, the field and temperature
dependence of the current factorizes, which is not in accordance with experimental data.
It has been demonstrated by Gerhardts [20] that the energy transfer to the lateral motion,
which makes the miniband transport effectively a three-dimensional problem, leads to a
shift of the current maximum with varying miniband width1, which deviates significantly
from results of the previously studied one-dimensional models. A similar conclusion has
been drawn by Lei, Horing and Cui [21, 22] from a balance equation approach, who also
reported satisfying agreement with experimental results.

From the analysis of the experimental data it has been claimed that the semiclassical
Boltzmann transport model seems to be adequate for the so-called band transport regime
occurring above a characteristic temperature of about 40 K [12, 13]. There is, however,
a fundamental limitation of the semiclassical Boltzmann approach—namely the neglect of
quantum Wannier–Stark localization (WSL), which has been clearly demonstrated to play
an essential role in electro-optical experiments on SLs [23–26]. The semiclassical treatment
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becomes apparently insufficient at high electric fields, where the states tend to localize
and where the electron distribution function might become strikingly different from its
equilibrium form.

In the SL miniband transport two different temperature regimes have been observed
[12]. At low temperatures and sufficiently high electric fields the eigenstates of electrons
are well localized and electrons diffuse through the crystal by hopping processes. The
current increases with increasing temperature as predicted by Calecki, Palmier and Chomette
[15], who calculated a hopping current linear in the electric field. Above a characteristic
temperature (∼40 K) the eigenfunctions extend over many SL periods and the carrier
transport is due to more or less extended states. In this regime the current decreases with
increasing temperature. While the semiclassical Boltzmann approach provides a fairly good
understanding of the high-temperature transport, there is no microscopic approach which
adequately describes both regimes at the same level of sophistication.

In this paper we present a rigorous microscopic theory of narrow miniband transport
in SLs under the influence of high electric fields. This approach reproduces the measured
temperature dependence of the current over the entire temperature interval. In addition,
clear electron–phonon resonance effects are predicted to occur in the current–voltage
characteristics of a SL. Our theory complements both former semiclassical treatments of
the band transport region and quantum mechanical descriptions of the hopping regime,
which did not properly account for the lateral electron heating. We hope that our approach
will stimulate further experimental and theoretical research of the Wannier–Stark quantum
transport in narrow-miniband semiconductor SLs.

2. Quantum theory of high-field transport

Most previous investigations of the miniband transport employed the semiclassical
Boltzmann equation, which is valid in the case of vanishing collision broadening (�τeff �
1). In the opposite limit (�τeff � 1), when the WSL prevails, the carrier transport
exhibits qualitatively different features, which significantly deviate from predictions made
on the basis of classical Boltzmann theory. In this case current anomalies appear such as
an oscillatory field dependence of the current and discontinuities in its derivative dj/dE
(cf. references [3, 4]). These anomalies are due to quantum corrections to the high-field
transport and require a rigorous quantum mechanical treatment. A serious disadvantage
of former theoretical studies of this transport regime is the simplified treatment of the
nonequilibrium distribution function. Almost all authors neglected the lateral electron
heating or described it by an equilibrium distribution function (for a review, see [17]).

Many years ago a convenient and general quantum description of the high-field transport
in semiconductors was worked out by Bryksin and Firsov [3, 4] and applied to narrow-band
semiconductors. The basic concept proposed in these papers provides a suitable starting
point for studying the high-field miniband transport in SLs, too. All of the basic transport
equations were derived in these papers, so there is no need to repeat all of the technical
details here. The interested reader is referred to the original literature [3, 4].

We focus on electron transport in one narrow miniband at low electron concentration so
that the electron gas is nondegenerate and Boltzmann statistics applies. In the NDC regime
the miniband current perpendicular to the SL layers is expressed by an effective probability
W̃ describing scattering-induced transitions between Stark ladder states [3, 4]:

jx = n

E

�2
0

(2π)6

∫
d3k

∫
d3k′ n(k′⊥)(ε(k

′)− ε(k))W̃ (k′,k). (1)
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Here n is the carrier density,�0 = a2d the volume of the unit cell, anda the lattice
constant parallel to the layers. It is a peculiarity of the representation (1) that the current
is expressed by an electron distribution function averaged overkx-values along the SL axis
(i.e. parallel to the field direction):n(k⊥) =

∑
kx
f (k). This function takes into account the

wavenumber-dependent energy transfer into the lateral directions. It is shown below that the
elimination of one degree of freedom (namely thekx-dependence) considerably simplifies
the quantum kinetic equation for the electron distribution function.

For the SL energy dispersion relationε(k) we use the tight-binding model for the motion
in the x-direction. The free-electron motion along the lateral directions is described by an
effective massm∗:

ε(k) = ε(k⊥)+ 1
2
(1− cos(kxd)) ε(k⊥) = h̄

2k2
⊥

2m∗
. (2)

The representation (1) of the current allows a simple physical interpretation to be given. In
the limit of extremely rare scattering events (�τeff � 1) there is an electric-field-mediated
change of the wavevectork with time t according tok(t) = k(0)+F t with F = eE/h̄. The
resulting drift velocityv = dε/dh̄k is periodic in t . Consequently, the electrons perform
an oscillatory motion with frequency�, so on average over time the current vanishes.
Scattering events give rise to a change of the electron mean positions, and the carriers jump
from layer to layer along the field direction. The related current is due to scattering-induced
transitions between Stark levels. Expressions for the effective transition probabilityW̃ and
the lateral distribution functionn(k⊥) entering this simple picture can only be derived from
a rigorous quantum mechanical treatment.

Starting from a quantum kinetic equation for the density matrix and imposing periodic
boundary conditions for the distribution function along thekx-direction, the following
general integral equation for the lateral distribution functionn(k⊥) was derived in [3]:∫

d3k′
∫

dkx
[
n(k′⊥)W̃ (k

′,k)− n(k⊥)W̃ (k,k′)
] = 0. (3)

Solving this equation is a formidable task because the effective scattering rateW̃ itself
satisfies a complicated integral equation [3]. However, if the electric field and the scattering
time satisfy the condition�τeff > 1, the functionW̃ can be expanded in powers of 1/�τeff .
In this case it is a good approximation to retain only the first term in this expansion. We
will focus on this situation and restrict our consideration to the electron–phonon scattering,
where the first term of this series is given [3] by

W(k′,k) = 2 Re
∫ ∞

0
dt e−st

∑
q

ω2
q|γq|2

[
(Nq + 1)e−iωq t +Nqeiωq t

]
× δk′,k+q−F t exp

{
i

h̄

∫ t/2

−t/2
dτ [ε(k + q − F τ)− ε(k − F τ)]

}
. (4)

Hereγq is the matrix element of the electron–phonon coupling,ωq the phonon frequency,
Nq = 1/(exp(h̄ωq/kBT )−1) the phonon distribution function, ands an adiabatic parameter.
The Houston representation (4) of the matrix elementW has been derived to lowest order in
the electron–phonon coupling and for low carrier concentrations, where correlation effects
can be neglected. In the high-field transport regime considered, it is necessary to preserve the
explicit field dependence of the transition rateW . A consideration of these intracollisional
field effects allows an adequate treatment of the Wannier–Stark localization.

The remaining part of the paper is devoted to the consideration of the particular situation
in which electrons are scattered on polar optical phonons with a narrow phonon bandwidth,
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which does not mask resonant-type current anomalies resulting from WSL. In addition, to
keep our presentation transparent we rely on the simple bulk phonon model, which already
reproduces the main qualitative features of the electron–phonon interaction in a SL. In this
case theq-sum in equation (4) is expressed by an integral (

∑
q → (a/2π)3

∫
d3q). The

exponential term in equation (4) is periodic inqx (qx → qx + 2π/d) and depends onq⊥
only via ε(k⊥ + q⊥), so the characteristic transverse electron and phonon momenta are of
the same order of magnitude. Denoting the exponential term in equation (4) byg(q) and
the remainingq-dependent factor by|γq|2h(ωq), the right-hand side of equation (4) has the
following structure:

W =
(
a

2π

)3 ∫
d3q |γq|2h(ωq)g(q). (5)

Now we neglect the weakq⊥-dependence inωq and γq, and consider the Fourier rep-
resentation ofg(q) with respect toqx :

W =
(
a

2π

)3 ∫
d2q⊥

∫ ∞
−∞

dqx |γqx |2h(ωqx )
∞∑

l=−∞
gl(q⊥)eilqxd/2π

=
(
a

2π

)3 ∫
d2q⊥

∫ 2π/d

0
dqx

∞∑
n=−∞

|γqx+2πn/d |2h(ωqx+2πn/d)

×
∞∑

l=−∞
gl(q⊥)eilqxd/2π . (6)

Here thegl(q⊥) are the Fourier coefficients ofg(q). In the restrictedqx-interval (06 qx 6
2π/d) the factor|γqx+2πn/d |2h(ωqx+2πn/d) depends only weakly onqx , so thel = 0 term
dominates thel-sum and we obtain

W ∼=
(
a

2π

)3 ∫
d3q |γqx |2h(ωqx ) gl=0(q⊥). (7)

Making use of the representation

gl=0(q⊥)
d

2π

∫ 2π/d

0
dqx g(qx, q⊥) (8)

and considering only dispersionless optical phonons (ωqx → ω0) we arrive at the following
expression for the transition probability:

W(k′,k) = 20ω2
0 Re

∫ ∞
0

dt e−st
[
(N0+ 1)e−iω0t +N0eiω0t

]
×
∫

d2q⊥
∫ 2π/d

0
dqx exp

{
i

h̄

∫ t/2

−t/2
dτ [ε(k + q − F τ)− ε(k − F τ)]

}
× δ(k′ − k − q + F t) (9)

where

0 = a

2π

∫ 2π/a

0
dqx |γqx |2 (10)

is an average of the electron–phonon coupling constant along the field direction. As the
q-integration has been extended over the entire momentum space, the lattice constanta

enters this average and not the SL periodd.
For nonpolar optical phonons the approximate replacement of theq-dependent coupling

matrix element by a constant0 is in general use. However, for the Fröhlich coupling of
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electrons to polar optical phonons, theqx-integral in equation (10) should be calculated
with caution. In this case finite results are only obtained when the bare coupling constant
γqx in equation (10) is replaced by its screened value, which prevents the divergence of the
qx-integral. Despite this difficulty, it seems to be necessary to take into account the full
q-dependence of the matrix element, when one is interested in reliable quantitative results
for the current density. This would prevent the above-mentioned convergence problems
from arising but requires further numerical studies.

We will employ equation (9) to calculate the current density from (1). The energy
difference|ε(k′) − ε(k)| is approximately given by ¯hω0. Due to the underlying spherical
symmetry in they, z-plane,n(k⊥) depends onk⊥ only via ε(k⊥). Inserting equation (9)
into (1), the elementary integrals overkx , k′x and τ are easily calculated. The remaining
k⊥-, k′⊥-integrals are replaced by integrations over the energy parametersε, ε′ with the help
of the area density of states

ρ⊥(ε) = 1

(2π)2

∫
d2k⊥ δ(ε − ε(k⊥)) = m∗

2πh̄
2(ε). (11)

Putting all of this together, we finally obtain for the current density the explicit expression

jx = n

E

20a4h̄ω3
0

1− exp(−β)
∫ ∞
−∞

dε dε′ ρ⊥(ε)ρ⊥(ε′)n(ε′)
[
I−(ε′, ε)− e−βI+(ε′, ε)

]
(12)

with

I±(ε′, ε) = Re
∫ ∞

0
dt e−stG(t) exp

[
i

h̄
(ε′ − ε ± h̄ω0)t

]
(13)

where β = h̄ω0/kBT is the temperature parameter.G(t) is a periodic field-dependent
function (G(t + 2π/�) = G(t)) defined by

G(t) = J0

(
1

h̄�
sin

(
�t

2

))2

(14)

and J0 is the Bessel function. It is convenient to introduce the Fourier transformation of
G(t):

G(t) =
∞∑

l=−∞
e−il�t �

2π

∫ π/�

−π/�
dt ′ eil�t ′G(t ′) (15)

which allows us to carry out thet-integration in equation (13). In the limits → +0
the quantityI± is expressed by a series ofδ-functions, so theε-integral in equation (12)
becomes trivial. Inserting (11), (13), (14) and (15) into equation (12) we obtain for the
current density along the SL axis

jx = J

1− exp(−β)
∞∑

l=−∞
fl

(
1

h̄�

)∫ ∞
0

dy n(y)

[
2

(
y − 1− �

ω0
l

)
− e−β2

(
y + 1− �

ω0
l

)]
(16)

with y = ε′/h̄ω0. Here n(y) is the normalized lateral electron distribution function
(
∫∞

0 dy n(y) = 1) and J = m∗ω3
0a

20n/E is some effective reference current density.
In addition, we have introduced the Fourier coefficients

fl(x) = 1

π

∫ π

0
dt cos(lt)J 2

0

(
x sin

t

2

)
= 1

π

∫ π

0
dt J 2

l (x sint). (17)
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The integral equation (3) for the lateral distribution functionn(k⊥) simplifies accordingly.
Starting from equations (3) and (9), and performing the same steps as for the calculation of
the current, we obtain the difference equation
∞∑

l=−∞
fl(x)

{
2

(
x + 1+ �

ω0
l

)[
n

(
x + 1+ �

ω0
l

)
− e−βn(x)

]
+ 2

(
x − 1+ �

ω0
l

)[
e−βn

(
x − 1+ �

ω0
l

)
− n(x)

]}
= 0 (18)

from which n(x) can be calculated (withx = ε/h̄ω0). Together with the normalization
condition forn(x), this equation has a unique solution. By eliminating thekx-dependence
of the distribution functionf (k) and considering spherical symmetry in the plane, we
obtained a simple quantum kinetic equation, in which only one degree of freedom remains.
Equations (16) and (18) are new basic results that apply to high-field miniband transport in
SLs including the NDC region. These equations support the intuitive picture of the high-
field transport as a succession of phonon-induced carrier jumps between Wannier–Stark
levels. They include intracollisional field effects and properly describe the lateral electron
heating via the nonequilibrium distribution functionn(x).

3. The quasi-classical limit

In this section we consider the quasi-classical limit when the hopping length is much smaller
than the localization length (eEd � 1). In that caseG(t) depends only weakly on�, so
one can neglect its field dependence:

G(t) ≈ J 2
0

(
1

2h̄
t

)
. (19)

Making use of this approximation, thet-integral in equation (13) is easily calculated and
we obtain for the current density along the field direction

jx = J

eβ − 1

1

π

∫ ∞
0

dx dx ′ n(x ′)
[
eβH(x ′ − x − 1)−H(x ′ − x + 1)

]
(20)

where the dimensionless energy variablesx = ε/h̄ω0 andx ′ = ε′/h̄ω0 have been introduced.
The functionH is defined by

H(x) = 2

απ
K

(√
1−

(
x

α

)2)
2(α − |x|) (21)

with K being the complete elliptic integral of the first kind andα = 1/h̄ω0 the bandwidth
parameter. A somewhat simpler representation forjx can be derived from equation (20) by
calculating thex-integral. Forα < 1 it follows that

jx = J

eβ − 1

[∫ ∞
1+α

dx n(x)+
∫ 1+α

1−α
dx n(x)F

(
1− x
α

)
− e−β

]
(22)

where we have introduced

F(c) = 2

π2

∫ 1

c

dx K(
√

1− x2) = 1

2
− x0

π
− 1

π2

∫ π−x0

x0

dx arcsin

(
c

sin(x)

)
(23)

with x0 = arcsin(c) andF(−c) = 1− F(c).
In the limit of narrow minibands (1 < h̄ω0) and temperatures satisfying ¯hω0 < kBT ,

the lateral carrier distribution function is approximately given by its equilibrium expression
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Figure 1. The dimensionless current densityjx/J as a function of the temperature parameter
kBT /1 for 1/h̄ω0 = 1. The upper solid line shows the temperature dependence obtained
from the Boltzmann equation approach (jx/J = I1(1/2kBT )/2I0(1/2kBT ), where I1 and
I0 are modified Bessel functions). The dashed line represents its asymptotic behaviour
(jx/J = 1/8kBT ). The lower solid line is our result according to equation (27), which behaves
asymptotically asjx/J = 12/(8kBT h̄ω0).

n(x) = β exp(−βx). In this case some interesting novel analytical results for the current
density can be derived from equation (20). To that end, thex ′-integral in equation (20) is
calculated, which gives

jx = J

eβ − 1

4

π2

∫ 1

0
dx

[
cosh

(
1

kBT
x

)
− 1

]
K(
√

1− x2). (24)

The complete elliptic integralK can be replaced byJ 2
0 according [27] to

K(
√

1− x2) = π
∫ ∞

0
dt cos 2xt J 2

0 (t). (25)

Now we make use of the relationship

J 2
l (z) =

1

π

∫ π

0
dx J2l(2z sinx) (26)

for l = 0, which allows us to express the remainingx-integral in equation (24) by the
modified Bessel functionI0. Finally, we obtain the following simple analytical result for
the current density:

jx = J
[
I 2

0

(
1

2kBT

)
− 1

]/ [
eβ − 1

]
. (27)

In the limit of high temperatures1� kBT this expression simplifies further and we have

jx = J

8
(1/kBT )

2/
[
eβ − 1

]
. (28)

Numerical results for the temperature dependence of the dimensionless current densityjx/J

are shown in figure 1 for1/h̄ω0 = 1 (lower solid line) and compared with the solution of
Boltzmann’s equationI1(1/2kBT )/(2I0(1/2kBT )) after reference [19] (upper solid line).
Its high-temperature slope1/(8kBT ) is given by the dashed line. At high temperatures
(kBT > 1) the current density is proportional to 1/T (jx = J12/(8h̄ω0kBT )), which
qualitatively agrees with the semiclassical Boltzmann model [18, 19] and experimental
results [12, 13]. In the literature it has been claimed that in this high-temperature regime the
simple semiclassical description seems to be adequate [12, 13]. At low temperatures (kBT <

1) the Boltzmann transport model still predicts an increase of the current with decreasing



Microscopic theory of high-field miniband transport 7411

temperature, which is in clear contradiction with the experiment [12]. Rather below some
crossover temperature the mobility decreases with decreasing temperature, which has been
attributed to activated hopping-like transport [12]. The same behaviour is reproduced by
our approach (lower solid line), which givesjx ∼ (kBT /1) exp(−(h̄ω0 − 1)/kBT ) in
this temperature region. In the quasi-classical limit considered, the decrease of the current
density with decreasing temperature is due to the energy conservation law which does not
allow one-phonon absorption processes ifε < h̄ω0 − 1 (and1 < h̄ω0). According to
the equilibrium distributionn(ε) ∼ exp(−ε/kBT ) the energy of the lateral electron motion
vanishes in the limitT → 0, so there is no current if the electric field becomes vanishingly
small. We conclude that unlike the semiclassical Boltzmann approach our theory gives a
consistent picture of both experimentally distinguished transport regimes, which have been
attributed to band transport and hopping conduction, respectively [12].

0 0.25 0.5 0.75 1
0

1

2

3

4

5

Energy "=�h!o

�h!o=kBT = 5

�=�h!
o
= 0:75

�=�h!o = 0:25

�=�h!
o
= 0:50

D
en

si
ty

n
("
=
�h
!
o
)

Figure 2. The lateral electron distributionn as a function of the energy parameterε/h̄ω0 for
h̄ω0/kBT = 5. For the solid lines from bottom to top the parameter1/h̄ω0 is 0.25, 0.5, and
0.75. The dashed line shows the dependence of the equilibrium distributionn(x) = β exp(−βx)
on x = ε/h̄ω0.

At sufficiently low temperatures the distribution functionn(ε) of the lateral electron
motion starts to deviate strongly from its equilibrium expression (n(ε) ∼ exp(−ε)/kBT ).
In this case it is necessary to solve the integral equation (3). Following the same steps
of calculation that led to equation (20) we obtain from equations (3) and (9) in the quasi-
classical limit (cf. equation (19))∫ ∞

0
dx {n(x) [1+H(x − y − 1)+ e−βH(x − y + 1)

]
− n(y) [H(x − y + 1)+ e−βH(x − y − 1)

]} = 0. (29)

Numerical results for the normalized distribution function calculated from equation (29) are
shown in figure 2 for ¯hω0/kBT = 5 (solid lines) and compared withn(x) = β exp(−βx)
(dashed line). From the bottom to the top curves the bandwidth parameter is1/h̄ω0 = 0.25,
0.5 and 0.75. Each curve deviates remarkably from the equilibrium distribution and exhibits
at least one sharp edge atε = h̄ω0−1.

In the limit of an extremely narrow miniband (1 � h̄ω0) the integral equation for the
lateral distribution function has the following analytical solution (see the appendix):

n(x) = Ce−βx
[

1+ (αβ)
2

8

(
n coth

(
β

2

)
− enβ

coshβ − 1

)]
(30)
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whereC is a normalization constant andn an integer defined byn < x = ε/h̄ω0 < n+ 1.
This solution is a stepwise exponential function of the energy variableε with steps located
at multiples of the phonon energy (when the assumed condition (α � 1) is fulfilled). The
analytical solution (30) is only applicable for sufficiently low energy parametersx. Outside
this applicability region,n(x) may even become negative.

4. Wannier–Stark quantization

In this section we return to our basic results (equations (16) and (18)) and treat the quantum
limit (1 6 eEd) where the Wannier–Stark localization and the related electron–phonon
resonance play a crucial role in understanding the electron transport. First we want to
derive some further analytical results for the current density and specialize to the case
wheren(x) = β exp(−βx). Then they-integral in equation (16) is easily calculated and
we obtain immediately

jx = J

eβ − 1

{ ∞∑
l=1

fl(ξ)(e
−2γ l − 1)+

lm∑
l=1

fl(ξ)(e
2γ l − 1)+ eβ

∞∑
l=lm+1

fl(ξ)(1− e−2γ l)

}
(31)

whereξ = 1/h̄�, γ = h̄�/2kBT and lm is the largest integer such thatlm�/ω0 < 1. In
order to further simplify this equation for the current density we take into account equation
(26) and

∞∑
l=−∞

e−2lγ J2l(z) = cosh(z sinhγ ). (32)

From these equations we obtain

∞∑
l=−∞

fl(ξ)e
−2γ l = I 2

0 (ξ sinhγ ) (33)

which is used to express equation (31) in the form

jx = J

eβ − 1

{
I 2

0

(
1

h̄�
sinh

h̄�

2kBT

)
− 1

− 4eβ/2
∞∑

l=lm+1

fl

(
1

h̄�

)
sinh

h̄�l

2kBT
sinh

h̄�l − h̄ω0

2kBT

}
. (34)

The third term on the right-hand side of equation (34) gives rise to a nonmonotonic field
dependence of the current and related electro–phonon resonance effects. However, in the
limit � � ω0 (or h̄� � 1) these resonance terms become exponentially small, and the
current is given by

jx = J
[
I 2

0

(
1

h̄�
sinh

h̄�

2kBT

)
− 1

]/ [
eβ − 1

]
. (35)

This result does not exhibit any peculiarities at Wannier–Stark energies and yields a smooth
temperature and field dependence of the current density. In the quasi-classical limit (�→ 0)
equation (35) agrees with equation (27).
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Figure 3. The temperature dependence of the current densityjx/J for 1/h̄ω0 = 1 (upper solid
and dashed lines) and1/h̄ω0 = 0.5 (lower solid and dotted lines). The solid and dashed/dotted
lines are calculated from equation (36) and (35), respectively. The chain line shows the quasi-
classical result after equation (27) for1/h̄ω0 = 1.

For extremely low temperatures thel-sum in equation (34) converges only slowly. In
this case we find it convenient to use another representation for the current which can be
derived directly from equation (31):

jx/J =
∞∑

l=lm+1

fl(ξ)

[
1− exp

(
− h̄�l
kBT

)]
+ 2e−β

1− e−β

lm∑
l=1

fl(ξ)

[
cosh

h̄�l

kBT
− 1

]
. (36)

In the limit of vanishing temperatures (T → 0) and�� ω0 the sums in equation (36) are
dominated by contributions aroundl = lm � 1, so we obtain

jx/J ≈ flm+1(ξ)+ flm(ξ) exp

(
h̄�lm − h̄ω0

kBT

)
. (37)

When lm � 1 we may exploit the asymptotic representation forfl(ξ) given by

fl(ξ) ≈ 1

2(πl)3/2
exp

{
−2l ln

(
2l

ξe

)}
. (38)

This equation can be used to derive the following final result for the current density at zero
temperature:

jx/J ≈ 1

π(πω0/�)3/2
exp

[
−2
ω0

�
ln

(
2

e

h̄ω0

1

)]
. (39)

In the limit T → 0 the current becomes exponentially small, but remains nonzero.
This nonanalytical field dependence of the current (jx ∼ E3/2 exp(−C/E), with C being
independent ofE) is due to the fact that the energy conservation law is smeared out by
the electric field. A similar field dependence appears in the Franz–Keldysh effect for the
electroabsorption and in the transport of narrow-band semiconductors [28].
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At low temperatures (kBT � h̄ω0) and sufficiently high electric fields (1� h̄�) again
flm+1 dominates, but this time atlm = 0 (f1(ξ) ≈ ξ2/8), so we obtain from (37)

jx/J ≈ 1

8

(
1

h̄�

)2

. (40)

This result simply means that the current becomes essentially temperature independent if
eEd is much larger than1 or h̄ω0. Under the influence of such high electric fields the
electrons gain enough energy to emit optical phonons independently of the temperature.

Numerical results for the temperature dependence of the current are shown in figure 3
for h̄�/1 = 0.5. The solid lines calculated from equation (36) are compared with results
obtained from equation (35) (dashed and dotted lines). Above a certain temperature if the
bandwidth1 is smaller than the phonon energy ¯hω0 (lower solid line for1/h̄ω0 = 0.5) the
solid and dotted lines coalesce and agree with the quasi-classical result, equation (27) (not
shown in figure 3). The results obtained from equations (35) and (36) for1/h̄ω0 = 0.5
strongly deviate from each other only at low temperatures satisfyingkBT /h̄ω0 . 0.1. If 1
becomes comparable with ¯hω0 (1 = h̄ω0), both the semiclassical result (calculated from
equation (27), chain line) and the monotonic dependence (obtained from equation (35),
dashed line) are no longer a good approximation for the low-temperature behaviour of
the current (as calculated from equation (36), upper solid line). Then the nonanalytical
dependence ofjx becomes dominant as obtained from equation (39). TheT = 0 values
calculated from equation (39) are marked by asterisks on the ordinate axis in figure 3.
Despite this complication, again two different temperature regions can be identified with a
crossover temperature of the order of ¯hω0/kB , which is quite similar to the quasi-classical
result of section 3.
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Figure 4. The field dependence of the dimensionless current densityjx/J0 with J0 =
enm∗ω3

00a
2d/1 for 1/h̄ω0 = 0.5 calculated from equation (36) (solid line). Its asymptotic

dependence (jx/J0 = (1/2h̄�)3) is shown by the dashed line, and the chain line is obtained
from equation (35).

The field dependence of the current as calculated from equation (36) is shown in figure 4
by the solid line and compared with the low-field data (after equation (35), chain line) and the
high-field asymptote (after equation (40), dashed line). The curves have been calculated for a
low lattice temperature (¯hω0 = 10kBT ) and a narrow bandwidth1/h̄ = 0.5ω0. Pronounced
electron–phonon resonant-type anomalies of the current appear at ¯h�/1 = 1/(αn) with n
being a positive integer. This field dependence of the current is similar to the Shubnikov–
de Haas oscillations observed in a two-dimensional electron gas at low transverse magnetic
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Figure 5. The field dependence of the dimensionless currentjx/J0 with J0 = enm∗ω3
00a

2d/1

for 1/h̄ω0 = 1 as calculated from equation (36) (solid line). Its asymptotic dependence
(jx/J0 = (1/2h̄�)3) is shown by the dashed line. The current exhibits sharp peaks at
h̄�/1 = 1/n (n = 1, 2, . . .).

fields. In that case the Landau quantization of the electronic eigenenergies in a magnetic
field is responsible for the appearance of oscillations. Another example is shown in figure 5
for 1 = h̄ω0 together with its high-field asymptote (dashed line). In this case nonanalytical
structures appear at electric field strengths determined by ¯h� = 1/n. In contrast to the case
for narrow-band semiconductors [28], these oscillatory current anomalies depend sensitively
on temperature and are most pronounced in the low-temperature regime.

Former theoretical treatments [29, 30] of the electron–phonon resonance effects
considered only the first term of the perturbation series in powers of the coupling constant.
Because this series is divergent as the time tends to infinity one has to sum it, which leads
to the kinetic equation (3) for the lateral electron distribution [3]. As shown in section 3 the
solution of this equation can deviate significantly from the Boltzmann distribution. Here
we derive some analytical results for the distribution functionn(ε) in the limit 1� h̄� by
exploiting the following asymptotic representation:

fl(ξ) ≈ (2l)!

l!4

(
ξ

4

)2l

. (41)

In this casen(ε) can be calculated from equation (18) by considering the fact that the term
with l = 0 dominates (becausefl � f0 if 1 < l). Retaining only thel = 0 contribution, we
obtain from equation (18) the solutionn(ε) ∼ exp(−βε). In order to calculate corrections
to this solution we make theansatz

n(ε) = Ce−ε/kBT (1+ y(ε)) (42)

and express the energy byε = ε + nh̄ω0 with 0 6 ε 6 h̄ω0 andn = 0, 1, 2, . . .. For the
small correctionsy(ε + nh̄ω0) ≡ yn the following set of recurrence equations is obtained:

y1− y0 = ϕ0 for n = 0

yn+1− yn + eβ(yn−1− yn) = ϕn for n > 1
(43)
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where the inhomogeneities are given by

ϕn =
∞∑

l=−∞

fl(ξ)

f0(ξ)
(1− e−2γ l){2(ε + h̄ω0+ (l + n)h̄�)+ eβ2(ε − h̄ω0+ (l + n)h̄�)}.

(44)

The set of recurrence equations (43) has the solution

yn =
n−1∑
m=0

ϕm
e(n−m)β − 1

eβ − 1
. (45)

Like equation (30), the representation (42) together with the corrections (45) is a stepwise
nonanalytical function of the energy variableε, which is again only applicable ifε is
sufficiently small.

5. Conclusion

We presented a microscopic theory for the miniband transport in semiconductor SLs under
high electric fields (eEd > h̄/τeff ), where the electronic conduction is governed by hopping-
like processes along the field direction aided by emission and absorption of long-wavelength
optical phonons. In contrast to the case for systems with confined electronic states, the
hopping transport in high electric fields is not activated. This is quite similar to hopping
under the influence of strong transverse magnetic fields in a two-dimensional system.

Our main objective in this paper has been to give a clear quantum mechanical picture of
the high-field miniband transport in SLs by focusing on the intracollisional field effects and
the heating of the lateral electron motion described by a nonequilibrium distribution function.
This approach allows us to account for both the so-called band transport and hopping
regimes at the same level of sophistication. This is necessary to reproduce the measured
temperature dependence of the current. As in the experiment [12], the calculated current
density exhibits a maximum at about the Debye temperature ¯hω0/kB , which shifts slightly to
lower temperatures with increasing bandwidth1 [12]. At higher temperatures (1 < kBT )
the current decreases proportionally to 1/T with an asymptotic slopejx ∼ 12/(kBT h̄ω0).
This agrees quite well with results of the semiclassical Boltzmann transport model, which
has been successfully used to analyse experimental data [13] and which gives a similar
asymptotic temperature dependence (jx ∼ 1/kBT ). Comparing our microscopic approach
with the Boltzmann model, the inelastic scattering rateνin describing relaxation towards an
equilibrium distribution [20] can be identified. We find that only parameters of the lateral
electron motion enter this scattering rate ¯hνin = m∗ω2

0a
20, where0 is some averaged

electron–phonon coupling constant. According to the Boltzmann approach the current
factorizes into a field- and a temperature-dependent part. Here we demonstrated, however,
that this factorization is only valid at high temperatures. In general the temperature and field
dependencies of the current do not decouple due to the field-mediated coupling between
transverse and longitudinal degrees of freedom via the nonequilibrium distribution function.
Below the crossover temperature, when the hopping regime dominates, the semiclassical
Boltzmann theory predicts a temperature dependence of the current, which even qualitatively
deviates from experimental data [12] as well as our theoretical results. In this region the
current decreases with decreasing temperature [12]. AtT = 0 the current reaches a finite
value due to the electric-field-induced smearing out of the energy conservation law. Such
a peculiarity is also well known from the Franz–Keldysh effect. We conclude that our
microscopic approach is the first one which qualitatively reproduces all of the features of
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the experimentally detected temperature dependence of the current in the two experimentally
distinguished transport regimes.

In the field regioneEd < h̄ω0 the current is sensitive to temperature as well as changes
of the electric field. If the interaction with longitudinal optical phonons is predominant,
sharp peaks are expected ateEd = h̄ω0/n (n = 1, 2, . . .) resulting in discontinuities of the
differential conductivity. (May and Vecht [6] even observed multiple-phonon resonances at
meEd = nh̄ω0, with m andn being positive integers.) This resonant-type current anomaly
is due to Wannier–Stark localization. When ¯hω0 < kBT or h̄ω0 < 1, these oscillations are
hardly observable. However, in contrast to the case for narrow-band semiconductors with an
isotropic energy dispersion, the electron–phonon resonance effects in SLs depend sensitively
on temperature and are most pronounced at low temperatures. Similar anomalies were
observed in the conductance–voltage characteristics of cubic ZnS films [6] and identified
with the Wannier–Stark effect [29, 30, 5, 6]. Experimental results obtained by Sibilleet al
(see the curve for1 = 4 meV andT = 80 K in their work [13]) could give a first hint
that electron–phonon resonance effects are observable in the miniband transport of SLs,
too. Further experimental research in this direction is necessary. An adequate theoretical
description of the oscillatory current anomalies is complicated by the fact that the lateral
electron distribution function may strongly deviate from its equilibrium form, preferentially
at low temperatures. This has been clearly demonstrated by the numerical and analytical
results presented in this paper.

In comparing our approach quantitatively with experimental data, we must remember
that there are other interaction mechanisms such as those with impurities, acoustic phonons
and interface roughness scattering, which play an essential role at low temperatures and may
broaden the electron–phonon resonance effects due to WSL. Furthermore, we point out that
Zener tunnelling between different minibands can play a crucial role in the current–voltage
characteristics of the SL transport [17].

Oscillatory current instabilities and the formation of high-field domains due to WSL
have been experimentally observed [31, 32] and theoretically analysed [33] for highly doped
samples with a sufficiently large charge density, which leads to the formation of a stable
field domain boundary. Actually, a spatially homogeneous current distribution such as is
considered in the paper at hand appears only at extremely low carrier densities.
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Appendix. Derivation of an analytical expression for the lateral density distribution

In this appendix, analytical results are derived for the lateral electron distribution function
n(x) for the case where1 � h̄ω0. We consider the quasi-classical limit in which the
influence of an electric field on the scattering probabilityW can be neglected. In this case
the integral equation (3) (̃W → W ) can be written in a more explicit form:∫ ∞
−∞

dε ρ⊥(ε){n(ε) [(N0+ 1)δ(ε − ς − h̄ω0+ A)+N0δ(ε − ς + h̄ω0+ A)]
− n(ς) [(N0+ 1)δ(ε − ς + h̄ω0+ A)+N0δ(ε − ς − h̄ω0+ A)]} = 0

(A1)
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with the abbreviation

A = −1
2
(cosk − cosk′). (A2)

Expanding this equation with respect to1 (or A) and collecting all lowest-order
contributions, we obtain the following difference–differential equation for the lateral density
distribution:

12

8
ρ⊥(ζ + h̄ω0)n

′′(ζ + h̄ω0)+ 1
2

8
e−βρ⊥(ζ − h̄ω0)n

′′(ζ − h̄ω0)

+ ρ⊥(ζ + h̄ω0)n(ζ + h̄ω0)− n(ζ )ρ⊥(ζ − h̄ω0)

+ e−β [ρ⊥(ζ − h̄ω0)n(ζ − h̄ω0)− n(ζ )ρ⊥(ζ − h̄ω0)] = 0 (A3)

which has the exact analytical solution given by equation (30).
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